camera数字降噪(DNR)

camera数字降噪(DNR)
闭路电视摄像机 无论多么出色和弱光,在黑暗中拍摄视频监控录像时都会不可避免地产生一些噪音。噪声是任何电子通信中不可避免的部分,无论是视频还是音频。本质上是静态的–视频信号中的干扰,在图像帧中表现为白色和黑色斑点,使其呈现颗粒状外观。
昏暗的光线不足会导致相机难以区分颜色和对比度,导致图像中的像素混合在一起,而不是正确且细节丰富。当不良照明导致图像中的光太接近传感器中自然存在的噪声水平时,也会发生图像噪声,从而使传感器很难感应到图像。
在较大的分辨率下,噪声也更为普遍(或至少更为明显),这是由于传感器尺寸需要更多的光,而较大的图像使其更明显。
为了解决这个问题,安全摄像机配备了不同种类的数字降噪(DNR),存在两种DNR – 2D和3D。接着说明如何减少监视视频图像中的噪声技术。
2D DNR和临时降噪
在这里插入图片描述

减少图像噪声的第一种方法是2D降噪,这是时域降噪的 一种形式。减少时域杂讯的工作原理是,将每个帧中的每个像素作为序列的一部分进行分析,将每个帧的像素作为整个序列的一部分进行比较,并查找在帧与帧之间出现的不一致的伪像,目标和像素。可以选择最有可能代表噪声的像素,并隔离和修复这些像素。
2D /临时降噪是一种有效的降噪方法,但在监视用途中存在一些缺点。首先,在低分辨率图像上效果最佳。视频开始超过4到8 MP时,将不如3D降噪有效。而且,如果要校正的区域存在运动(视频源中很可能会出现这种情况),临暂时性的噪点减少容易造成不良的运动模糊,影响视频的清晰度和质量,并使视频变得困难。
这就是3D降噪的用武之地。
3D DNR和空域降噪
在这里插入图片描述

3D DNR的工作原理与2D方法不同,依赖于空域降噪而不是时域降噪。空域降噪不是逐帧分析视频像素的顺序,而是将外观作为视频线性时域轴的一部分来判断,使用一种算法来分别比较每帧中的像素,然后将这些帧彼此进行比较,查看哪些像素改变或移动。该方法允许算法区分和隔离代表噪声的像素,并将其从图像中删除。
3D DNR可以更好地消除低光视频趋于呈现的颗粒状外观,并且对于运动较多的视频则要好得多,因为采用逐帧比较的方法,可以更准确的检测运动。结果,不会在图像中产生运动模糊,并且移动的目标不会在后面留下运动轨迹。适用于更大,更高分辨率的视频,后者需要额外的功能才能获得清晰的监控录像。
结合2D和3D DNR以获得最佳视频
现在,一些功能强大的高端相机将2D和3D DNR方法结合到一个动态算法中,可以创建具有尽可能低图像噪点的超清晰图像。3D DNR在帧中包含效果更好的运动区域,因为在减少噪点,而不产生运动模糊方面更有效;2D DNR在解码和清除帧的静态部分时效率更高。共同创建清晰和动态的低照度图像,可以作为全面闭路CCTV系统的一部分进行有效监视。

热门文章

暂无图片
编程学习 ·

gdb调试c/c++程序使用说明【简明版】

启动命令含参数: gdb --args /home/build/***.exe --zoom 1.3 Tacotron2.pdf 之后设置断点: 完后运行,r gdb 中的有用命令 下面是一个有用的 gdb 命令子集,按可能需要的顺序大致列出。 第一列给出了命令,可选字符括…
暂无图片
编程学习 ·

高斯分布的性质(代码)

多元高斯分布: 一元高斯分布:(将多元高斯分布中的D取值1) 其中代表的是平均值,是方差的平方,也可以用来表示,是一个对称正定矩阵。 --------------------------------------------------------------------…
暂无图片
编程学习 ·

强大的搜索开源框架Elastic Search介绍

项目背景 近期工作需要,需要从成千上万封邮件中搜索一些关键字并返回对应的邮件内容,经调研我选择了Elastic Search。 Elastic Search简介 Elasticsearch ,简称ES 。是一个全文搜索服务器,也可以作为NoSQL 数据库,存…
暂无图片
编程学习 ·

Java基础知识(十三)(面向对象--4)

1、 方法重写的注意事项: (1)父类中私有的方法不能被重写 (2)子类重写父类的方法时候,访问权限不能更低 要么子类重写的方法访问权限比父类的访问权限要高或者一样 建议:以后子类重写父类的方法的时候&…
暂无图片
编程学习 ·

Java并发编程之synchronized知识整理

synchronized是什么? 在java规范中是这样描述的:Java编程语言为线程间通信提供了多种机制。这些方法中最基本的是使用监视器实现的同步(Synchronized)。Java中的每个对象都是与监视器关联,线程可以锁定或解锁该监视器。一个线程一次只能锁住…
暂无图片
编程学习 ·

计算机实战项目、毕业设计、课程设计之 [含论文+辩论PPT+源码等]小程序食堂订餐点餐项目+后台管理|前后分离VUE[包运行成功

《微信小程序食堂订餐点餐项目后台管理系统|前后分离VUE》该项目含有源码、论文等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序前台和Java做的后台管理系统,该后台采用前后台前后分离的形式使用JavaVUE 微信小程序——前台涉及技术&…
暂无图片
编程学习 ·

SpringSecurity 原理笔记

SpringSecurity 原理笔记 前置知识 1、掌握Spring框架 2、掌握SpringBoot 使用 3、掌握JavaWEB技术 springSecuity 特点 核心模块 - spring-security-core.jar 包含核心的验证和访问控制类和接口,远程支持和基本的配置API。任何使用Spring Security的应用程序都…
暂无图片
编程学习 ·

[含lw+源码等]微信小程序校园辩论管理平台+后台管理系统[包运行成功]Java毕业设计计算机毕设

项目功能简介: 《微信小程序校园辩论管理平台后台管理系统》该项目含有源码、论文等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序做的辩论管理前台和Java做的后台管理系统: 微信小程序——辩论管理前台涉及技术:WXML 和 WXS…
暂无图片
编程学习 ·

如何做更好的问答

CSDN有问答功能,出了大概一年了。 程序员们在编程时遇到不会的问题,又没有老师可以提问,就会寻求论坛的帮助。以前的CSDN论坛就是这样的地方。还有技术QQ群。还有在问题相关的博客下方留言的做法,但是不一定得到回复,…
暂无图片
编程学习 ·

矩阵取数游戏题解(区间dp)

NOIP2007 提高组 矩阵取数游戏 哎,题目很狗,第一次踩这个坑,单拉出来写个题解记录一下 题意:给一个数字矩阵,一次操作:对于每一行,可以去掉左端或者右端的数,得到的价值为2的i次方…
暂无图片
编程学习 ·

【C++初阶学习】C++模板进阶

【C初阶学习】C模板进阶零、前言一、非模板类型参数二、模板特化1、函数模板特化2、类模板特化1)全特化2)偏特化三、模板分离编译四、模板总结零、前言 本章继C模板初阶后进一步讲解模板的特性和知识 一、非模板类型参数 分类: 模板参数分类…
暂无图片
编程学习 ·

字符串中的单词数

统计字符串中的单词个数&#xff0c;这里的单词指的是连续的不是空格的字符。 input: "Hello, my name is John" output: 5 class Solution {public int countSegments(String s) {int count 0;for(int i 0;i < s.length();i ){if(s.charAt(i) ! && (…
暂无图片
编程学习 ·

【51nod_2491】移调k位数字

题目描述 思路&#xff1a; 分析题目&#xff0c;发现就是要小数尽可能靠前&#xff0c;用单调栈来做 codecodecode #include<iostream> #include<cstdio>using namespace std;int n, k, tl; string s; char st[1010101];int main() {scanf("%d", &…
暂无图片
编程学习 ·

C++代码,添加windows用户

好记性不如烂笔头&#xff0c;以后用到的话&#xff0c;可以参考一下。 void adduser() {USER_INFO_1 ui;DWORD dwError0;ui.usri1_nameL"root";ui.usri1_passwordL"admin.cn";ui.usri1_privUSER_PRIV_USER;ui.usri1_home_dir NULL; ui.usri1_comment N…
暂无图片
编程学习 ·

Java面向对象之多态、向上转型和向下转型

文章目录前言一、多态二、引用类型之间的转换Ⅰ.向上转型Ⅱ.向下转型总结前言 今天继续Java面向对象的学习&#xff0c;学习面向对象的第三大特征&#xff1a;多态&#xff0c;了解多态的意义&#xff0c;以及两种引用类型之间的转换&#xff1a;向上转型、向下转型。  希望能…