kafka学习笔记

kafka基于发布订阅的消息队列,需要消费者主动的到队列里面获取,一个分区对应消费组的一个消费者

kafka的启动

  • 首先,修改%KAFKA_HOME%\conf\zookeeper.properties中的dataDir=/tmp/zookeeper,改为dataDir=/mnt/d/ubuntuSoft/kafka_2.12-0.11.0.0/data/zookeeper

  • 创建新目录D:\ubuntuSoft\kafka_2.12-0.11.0.0\data\zookeeper

  • 执行命令行:

    ./zookeeper-server-start.sh -daemon /mnt/d/ubuntuSoft/kafka_2.12-0.11.0.0/config/zookeeper.properties
    
  • 修改%KAFKA_HOME%\conf\server.properties中的log.dirs=/tmp/kafka-logs,改为log.dirs=/mnt/d/ubuntuSoft/kafka_2.12-0.11.0.0/data/kafka-logs。这里配置的log路径就是kafka的data路径

  • 创建新目录D:\ubuntuSoft\kafka_2.12-0.11.0.0\data\kafka-logs

  • 执行命令行:

./kafka-server-start.sh -daemon /mnt/d/ubuntuSoft/kafka_2.12-0.11.0.0/config/server.properties

创建topic

  • 用单一partition和单一replica创建一个名为test的topic:

    选项 说明: 说明:
    –topic 定义 topic名
    –replication-factor 定义副本数
    –partitions 定义分区数

./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
  • 查看已创建的topic,也就刚才创建的名为test的topic:
./kafka-topics.sh --list --zookeeper localhost:2181

删除主题:

./kafka-topic.sh --zookeeper localhost:2181 --delete --topic test

需要 server.properties中设置 delete.topic.enable=true否则只是标记删除。 否则只是标记删除。 否则只是标记删除。 否

启动producer生产消息

运行producer,然后输入几行文本,发至服务器:

./kafka-console-producer.sh --broker-list localhost:9092 --topic test
>hello
>kafka

请勿关闭窗口,下面步骤需要用到

启动consumer消费消息

运行consume,标准输出。

–from-beginning:会把主题中以往所有的数据都读取出来。

./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
hello, 
kafka

若你另启cmd,执行命令行bin\windows\kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic test --from-beginning来运行consumer,然后在producer窗口输入一行句子,如hello both,两个consumer也会同时输出hello both

工作流程

在这里插入图片描述

Kafka 中消息是以 topic 进行分类的, producer生产消息,consumer消费消息,都是面向 topic的。

topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。(topic = N partition,partition = log)

Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的 offset。 consumer组中的每个consumer, 都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。(producer -> log with offset -> consumer(s))

文件存储

在这里插入图片描述

由于生产者生产的消息会不断追加到 log 文件末尾, 为防止 log 文件过大导致数据定位效率低下, Kafka 采取了分片索引机制,将每个 partition 分为多个 segment。

每个 segment对应两个文件——“.index”文件和“.log”文件。 这些文件位于一个文件夹下, 该文件夹的命名规则为: topic 名称+分区序号。例如, first 这个 topic 有三个分区,则其对应的文件夹为 first-0,first-1,first-2。

00000000000000000000.index
00000000000000000000.log
00000000000000170410.index
00000000000000170410.log
00000000000000239430.index
00000000000000239430.log

index 和 log 文件以当前 segment 的第一条消息的 offset 命名。下图为 index 文件和 log文件的结构示意图。

在这里插入图片描述

“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。

生产者分区策略

分区的原因

  1. 方便在集群中扩展,每个 Partition 可以通过调整以适应它所在的机器,而一个 topic又可以有多个 Partition 组成,因此整个集群就可以适应适合的数据了;
  2. 可以提高并发,因为可以以 Partition 为单位读写了。

分区的原则

我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象。

在这里插入图片描述

  1. 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  2. 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  3. 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition值,也就是常说的 round-robin 算法。

生产者ISR

为保证 producer 发送的数据,能可靠的发送到指定的 topic, topic 的每个 partition 收到producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果producer 收到 ack, 就会进行下一轮的发送,否则重新发送数据。

在这里插入图片描述

何时发送ack?

确保有follower与leader同步完成,leader再发送ack,这样才能保证leader挂掉之后,能在follower中选举出新的leader。


多少个follower同步完成之后发送ack?

  1. 半数以上的follower同步完成,即可发送ack继续发送重新发送
  2. 全部的follower同步完成,才可以发送ack

副本数据同步策略

序号方案优点缺点
1半数以上完成同步, 就发送 ack延迟低选举新的 leader 时,容忍 n 台节点的故障,需要 2n+1 个副本。(如果集群有2n+1台机器,选举leader的时候至少需要半数以上即n+1台机器投票,那么能容忍的故障,最多就是n台机器发生故障)容错率:1/2
2全部完成同步,才发送ack选举新的 leader 时, 容忍 n 台节点的故障,需要 n+1 个副本(如果集群有n+1台机器,选举leader的时候只要有一个副本就可以了)容错率:1延迟高

Kafka 选择了第二种方案,原因如下:

  1. 同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1 个副本,而 Kafka 的每个分区都有大量的数据, 第一种方案会造成大量数据的冗余。
  2. 虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。

ISR

采用第二种方案之后,设想以下情景: leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?

Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,就会给 leader 发送 ack。如果 follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。 Leader 发生故障之后,就会从 ISR 中选举新的 leader。

生产者ACK机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。

所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。

acks 参数配置

  • 0: producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟, broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据

  • 1: producer 等待 broker 的 ack, partition 的 leader 落盘成功后返回 ack,如果在 follower同步成功之前 leader 故障,那么将会丢失数据

在这里插入图片描述

  • -1(all) : producer 等待 broker 的 ack, partition 的 leader 和 ISR 的follower 全部落盘成功后才返回 ack。但是如果在 follower 同步完成后, broker 发送 ack 之前, leader 发生故障,那么会造成数据重复

在这里插入图片描述

数据一致性问题

在这里插入图片描述

  • LEO:(Log End Offset)每个副本的最后一个offset
  • HW:(High Watermark)高水位,指的是消费者能见到的最大的 offset, ISR 队列中最小的 LEO

follower 故障和 leader 故障

  • follower 故障:follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后, follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
  • leader 故障:leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性, 其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。

注意: 这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

ExactlyOnce

将服务器的 ACK 级别设置为-1(all),可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。

相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。

At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的, At Most Once可以保证数据不重复,但是不能保证数据不丢失。 但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。

0.11 版本的 Kafka,引入了一项重大特性:幂等性所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:

At Least Once + 幂等性 = Exactly Once

要启用幂等性,只需要将 Producer 的参数中 enable.idempotence 设置为 true 即可。 Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而Broker 端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时, Broker 只会持久化一条。

但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。

消费者分区分配策略

消费方式

consumer 采用 pull(拉) 模式从 broker 中读取数据

push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。

pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中, 一直返回空数据。 针对这一点, Kafka 的消费者在消费数据时会传入一个时长参数 timeout,如果当前没有数据可供消费, consumer 会等待一段时间之后再返回,这段时长即为 timeout。

分区分配策略

一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定那个 partition 由哪个 consumer 来消费。

Kafka 有两种分配策略:

round-robin循环

关于Roudn Robin重分配策略,其主要采用的是一种轮询的方式分配所有的分区,该策略主要实现的步骤如下。这里我们首先假设有三个topic:t0、t1和t2,这三个topic拥有的分区数分别为1、2和3,那么总共有六个分区,这六个分区分别为:t0-0、t1-0、t1-1、t2-0、t2-1和t2-2。这里假设我们有三个consumer:C0、C1和C2,它们订阅情况为:C0订阅t0,C1订阅t0和t1,C2订阅t0、t1和t2。那么这些分区的分配步骤如下:

  • 首先将所有的partition和consumer按照字典序进行排序,所谓的字典序,就是按照其名称的字符串顺序,那么上面的六个分区和三个consumer排序之后分别为:

    然后依次以按顺序轮询的方式将这六个分区分配给三个consumer,如果当前consumer没有订阅当前分区所在的topic,则轮询的判断下一个consumer:

    尝试将t0-0分配给C0,由于C0订阅了t0,因而可以分配成功;

    尝试将t1-0分配给C1,由于C1订阅了t1,因而可以分配成功;

    尝试将t1-1分配给C2,由于C2订阅了t1,因而可以分配成功;

    尝试将t2-0分配给C0,由于C0没有订阅t2,因而会轮询下一个consumer;

    尝试将t2-0分配给C1,由于C1没有订阅t2,因而会轮询下一个consumer;

    尝试将t2-0分配给C2,由于C2订阅了t2,因而可以分配成功;

    同理由于t2-1和t2-2所在的topic都没有被C0和C1所订阅,因而都不会分配成功,最终都会分配给C2。

    按照上述的步骤将所有的分区都分配完毕之后,最终分区的订阅情况如下:

在这里插入图片描述

range

range策略是基于每个主题的

所谓的Range重分配策略,就是首先会计算各个consumer将会承载的分区数量,然后将指定数量的分区分配给该consumer。这里我们假设有两个consumer:C0和C1,两个topic:t0和t1,这两个topic分别都有三个分区,那么总共的分区有六个:t0-0、t0-1、t0-2、t1-0、t1-1和t1-2。那么Range分配策略将会按照如下步骤进行分区的分配:

  • 需要注意的是,Range策略是按照topic依次进行分配的,比如我们以t0进行讲解,其首先会获取t0的所有分区:t0-0、t0-1和t0-2,以及所有订阅了该topic的consumer:C0和C1,并且会将这些分区和consumer按照字典序进行排序;
  • 然后按照平均分配的方式计算每个consumer会得到多少个分区,如果没有除尽,则会将多出来的分区依次计算到前面几个consumer。比如这里是三个分区和两个consumer,那么每个consumer至少会得到1个分区,而3除以2后还余1,那么就会将多余的部分依次算到前面几个consumer,也就是这里的1会分配给第一个consumer,总结来说,那么C0将会从第0个分区开始,分配2个分区,而C1将会从第2个分区开始,分配1个分区;
  • 同理,按照上面的步骤依次进行后面的topic的分配。
  • 最终上面六个分区的分配情况如下:

在这里插入图片描述

可以看到,如果按照Range分区方式进行分配,其本质上是依次遍历每个topic,然后将这些topic的分区按照其所订阅的consumer数量进行平均的范围分配。这种方式从计算原理上就会导致排序在前面的consumer分配到更多的分区,从而导致各个consumer的压力不均衡。

消费者offset的存储

Kafka 0.9 版本之前, consumer 默认将 offset 保存在 Zookeeper 中,从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为__consumer_offsets

  1. 修改配置文件 consumer.properties,exclude.internal.topics=false
  2. 读取 offset
    • 0.11.0.0 之前版本 - bin/kafka-console-consumer.sh --topic __consumer_offsets --zookeeper hadoop102:2181 --formatter "kafka.coordinator.GroupMetadataManager\$OffsetsMessageFormatter" --consumer.config config/consumer.properties --from-beginning
    • 0.11.0.0 及之后版本 - bin/kafka-console-consumer.sh --topic __consumer_offsets --zookeeper hadoop102:2181 --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --consumer.config config/consumer.properties --from-beginning

Kafka高级_事务

Kafka 从 0.11 版本开始引入了事务支持。事务可以保证 Kafka 在 Exactly Once 语义的基础上,生产和消费可以跨分区和会话,要么全部成功,要么全部失败。

Producer 事务

为了实现跨分区跨会话的事务,需要引入一个全局唯一的 Transaction ID,并将 Producer 获得的PID 和Transaction ID 绑定。这样当Producer 重启后就可以通过正在进行的 TransactionID 获得原来的 PID。

为了管理 Transaction, Kafka 引入了一个新的组件 Transaction Coordinator。 Producer 就是通过和 Transaction Coordinator 交互获得 Transaction ID 对应的任务状态。 Transaction Coordinator 还负责将事务所有写入 Kafka 的一个内部 Topic,这样即使整个服务重启,由于事务状态得到保存,进行中的事务状态可以得到恢复,从而继续进行。

Consumer 事务

上述事务机制主要是从 Producer 方面考虑,对于 Consumer 而言,事务的保证就会相对较弱,尤其时无法保证 Commit 的信息被精确消费。这是由于 Consumer 可以通过 offset 访问任意信息,而且不同的 Segment File 生命周期不同,同一事务的消息可能会出现重启后被删除的情况。

面试题:

1.Kafka中的ISR(InSyncRepli)、OSR(OutSyncRepli)、AR(AllRepli)代表什么?

ISR : 速率和leader相差低于10秒的follower的集合
OSR : 速率和leader相差大于10秒的follower
AR : 所有分区的follower

2.Kafka中的HW、LEO等分别代表什么?

HW : 又名高水位,根据同一分区中,最低的LEO所决定
LEO : 每个分区的最高offset

3.Kafka的用途有哪些?使用场景如何?

1.用户追踪:根据用户在web或者app上的操作,将这些操作消息记录到各个topic中,然后消费者通过订阅这些消息做实时的分析,或者记录到HDFS,用于离线分析或数据挖掘
2.日志收集:通过kafka对各个服务的日志进行收集,再开放给各个consumer
3.消息系统:缓存消息
4.运营指标:记录运营监控数据,收集操作应用数据的集中反馈,如报错和报告

4.Kafka中是怎么体现消息顺序性的?

每个分区内,每条消息都有offset,所以只能在同一分区内有序,但不同的分区无法做到消息顺序性

5.“消费组中的消费者个数如果超过topic的分区,那么就会有消费者消费不到数据”这句话是否正确?

对的,超过分区数的消费者就不会再接收数据

6.有哪些情形会造成重复消费?或丢失信息?

先处理后提交offset,会造成重读消费
先提交offset后处理,会造成数据丢失

7.Kafka 分区的目的?

对于kafka集群来说,分区可以做到负载均衡,对于消费者来说,可以提高并发度,提高读取效率

8.Kafka 的高可靠性是怎么实现的?

为了实现高可靠性,kafka使用了订阅的模式,并使用isr和ack应答机制
能进入isr中的follower和leader之间的速率不会相差10秒
当ack=0时,producer不等待broker的ack,不管数据有没有写入成功,都不再重复发该数据
当ack=1时,broker会等到leader写完数据后,就会向producer发送ack,但不会等follower同步数据,如果这时leader挂掉,producer会对新的leader发送新的数据,在old的leader中不同步的数据就会丢失
当ack=-1或者all时,broker会等到leader和isr中的所有follower都同步完数据,再向producer发送ack,有可能造成数据重复

9.topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?

可以增加

bin/kafka-topics.sh --zookeeper localhost:2181/kafka --alter --topic topic-config --partitions 3
1

10.topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?

不可以,先有的分区数据难以处理

11.简述Kafka的日志目录结构?

每一个分区对应一个文件夹,命名为topic-0,topic-1,每个文件夹内有.index和.log文件

12.如何解决消费者速率低的问题?

增加分区数和消费者数

13.Kafka的那些设计让它有如此高的性能??

1.kafka是分布式的消息队列
2.对log文件进行了segment,并对segment建立了索引
3.(对于单节点)使用了顺序读写,速度可以达到600M/s
4.引用了zero拷贝,在os系统就完成了读写操作

14.kafka启动不起来的原因?

在关闭kafka时,先关了zookeeper,就会导致kafka下一次启动时,会报节点已存在的错误
只要把zookeeper中的zkdata/version-2的文件夹删除即可

15.聊一聊Kafka Controller的作用?

负责kafka集群的上下线工作,所有topic的副本分区分配和选举leader工作

16.Kafka中有那些地方需要选举?这些地方的选举策略又有哪些?

在ISR中需要选择,选择策略为先到先得

17.失效副本是指什么?有那些应对措施?

失效副本为速率比leader相差大于10秒的follower
将失效的follower先提出ISR
等速率接近leader10秒内,再加进ISR

18.Kafka消息是采用Pull模式,还是Push模式?

在producer阶段,是向broker用Push模式
在consumer阶段,是向broker用Pull模式
在Pull模式下,consumer可以根据自身速率选择如何拉取数据,避免了低速率的consumer发生崩溃的问题
但缺点是,consumer要时不时的去询问broker是否有新数据,容易发生死循环,内存溢出

19.Kafka创建Topic时如何将分区放置到不同的Broker中?

首先副本数不能超过broker数
第一分区是随机从Broker中选择一个,然后其他分区相对于0号分区依次向后移
第一个分区是从nextReplicaShift决定的,而这个数也是随机产生的

20.Kafka中的事务是怎么实现的

kafka事务有两种
producer事务和consumer事务
producer事务是为了解决kafka跨分区跨会话问题
kafka不能跨分区跨会话的主要问题是每次启动的producer的PID都是系统随机给的
所以为了解决这个问题
我们就要手动给producer一个全局唯一的id,也就是transaction id 简称TID
我们将TID和PID进行绑定,在producer带着TID和PID第一次向broker注册时,broker就会记录TID,并生成一个新的组件__transaction_state用来保存TID的事务状态信息
当producer重启后,就会带着TID和新的PID向broker发起请求,当发现TID一致时
producer就会获取之前的PID,将覆盖掉新的PID,并获取上一次的事务状态信息,从而继续上次工作
consumer事务相对于producer事务就弱一点,需要先确保consumer的消费和提交位置为一致且具有事务功能,才能保证数据的完整,不然会造成数据的丢失或重复

21.Kafka中的分区器、序列化器、拦截器是否了解?它们之间的处理顺序是什么?

拦截器>序列化器>分区器

22.Kafka生产者客户端的整体结构是什么样子的?使用了几个线程来处理?分别是什么?

使用两个线程:
main线程和sender线程
main线程会依次经过拦截器,序列化器,分区器将数据发送到RecourdAccumlator(线程共享变量)
再由sender线程从RecourdAccumlator中拉取数据发送到kafka broker
相关参数:
batch.size:只有数据积累到batch.size之后,sender才会发送数据。
linger.ms:如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。

23.消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?

offset + 1

生产者发送数据offset是从0开始的

消费者消费的数据offset是从offset+1开始的

热门文章

暂无图片
编程学习 ·

gdb调试c/c++程序使用说明【简明版】

启动命令含参数&#xff1a; gdb --args /home/build/***.exe --zoom 1.3 Tacotron2.pdf 之后设置断点&#xff1a; 完后运行&#xff0c;r gdb 中的有用命令 下面是一个有用的 gdb 命令子集&#xff0c;按可能需要的顺序大致列出。 第一列给出了命令&#xff0c;可选字符括…
暂无图片
编程学习 ·

高斯分布的性质(代码)

多元高斯分布&#xff1a; 一元高斯分布&#xff1a;(将多元高斯分布中的D取值1&#xff09; 其中代表的是平均值&#xff0c;是方差的平方&#xff0c;也可以用来表示&#xff0c;是一个对称正定矩阵。 --------------------------------------------------------------------…
暂无图片
编程学习 ·

强大的搜索开源框架Elastic Search介绍

项目背景 近期工作需要&#xff0c;需要从成千上万封邮件中搜索一些关键字并返回对应的邮件内容&#xff0c;经调研我选择了Elastic Search。 Elastic Search简介 Elasticsearch &#xff0c;简称ES 。是一个全文搜索服务器&#xff0c;也可以作为NoSQL 数据库&#xff0c;存…
暂无图片
编程学习 ·

Java基础知识(十三)(面向对象--4)

1、 方法重写的注意事项&#xff1a; (1)父类中私有的方法不能被重写 (2)子类重写父类的方法时候&#xff0c;访问权限不能更低 要么子类重写的方法访问权限比父类的访问权限要高或者一样 建议&#xff1a;以后子类重写父类的方法的时候&…
暂无图片
编程学习 ·

Java并发编程之synchronized知识整理

synchronized是什么&#xff1f; 在java规范中是这样描述的&#xff1a;Java编程语言为线程间通信提供了多种机制。这些方法中最基本的是使用监视器实现的同步(Synchronized)。Java中的每个对象都是与监视器关联&#xff0c;线程可以锁定或解锁该监视器。一个线程一次只能锁住…
暂无图片
编程学习 ·

计算机实战项目、毕业设计、课程设计之 [含论文+辩论PPT+源码等]小程序食堂订餐点餐项目+后台管理|前后分离VUE[包运行成功

《微信小程序食堂订餐点餐项目后台管理系统|前后分离VUE》该项目含有源码、论文等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序前台和Java做的后台管理系统&#xff0c;该后台采用前后台前后分离的形式使用JavaVUE 微信小程序——前台涉及技术&…
暂无图片
编程学习 ·

SpringSecurity 原理笔记

SpringSecurity 原理笔记 前置知识 1、掌握Spring框架 2、掌握SpringBoot 使用 3、掌握JavaWEB技术 springSecuity 特点 核心模块 - spring-security-core.jar 包含核心的验证和访问控制类和接口&#xff0c;远程支持和基本的配置API。任何使用Spring Security的应用程序都…
暂无图片
编程学习 ·

[含lw+源码等]微信小程序校园辩论管理平台+后台管理系统[包运行成功]Java毕业设计计算机毕设

项目功能简介: 《微信小程序校园辩论管理平台后台管理系统》该项目含有源码、论文等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序做的辩论管理前台和Java做的后台管理系统&#xff1a; 微信小程序——辩论管理前台涉及技术&#xff1a;WXML 和 WXS…
暂无图片
编程学习 ·

如何做更好的问答

CSDN有问答功能&#xff0c;出了大概一年了。 程序员们在编程时遇到不会的问题&#xff0c;又没有老师可以提问&#xff0c;就会寻求论坛的帮助。以前的CSDN论坛就是这样的地方。还有技术QQ群。还有在问题相关的博客下方留言的做法&#xff0c;但是不一定得到回复&#xff0c;…
暂无图片
编程学习 ·

矩阵取数游戏题解(区间dp)

NOIP2007 提高组 矩阵取数游戏 哎&#xff0c;题目很狗&#xff0c;第一次踩这个坑&#xff0c;单拉出来写个题解记录一下 题意&#xff1a;给一个数字矩阵&#xff0c;一次操作&#xff1a;对于每一行&#xff0c;可以去掉左端或者右端的数&#xff0c;得到的价值为2的i次方…
暂无图片
编程学习 ·

【C++初阶学习】C++模板进阶

【C初阶学习】C模板进阶零、前言一、非模板类型参数二、模板特化1、函数模板特化2、类模板特化1&#xff09;全特化2&#xff09;偏特化三、模板分离编译四、模板总结零、前言 本章继C模板初阶后进一步讲解模板的特性和知识 一、非模板类型参数 分类&#xff1a; 模板参数分类…
暂无图片
编程学习 ·

字符串中的单词数

统计字符串中的单词个数&#xff0c;这里的单词指的是连续的不是空格的字符。 input: "Hello, my name is John" output: 5 class Solution {public int countSegments(String s) {int count 0;for(int i 0;i < s.length();i ){if(s.charAt(i) ! && (…
暂无图片
编程学习 ·

【51nod_2491】移调k位数字

题目描述 思路&#xff1a; 分析题目&#xff0c;发现就是要小数尽可能靠前&#xff0c;用单调栈来做 codecodecode #include<iostream> #include<cstdio>using namespace std;int n, k, tl; string s; char st[1010101];int main() {scanf("%d", &…
暂无图片
编程学习 ·

C++代码,添加windows用户

好记性不如烂笔头&#xff0c;以后用到的话&#xff0c;可以参考一下。 void adduser() {USER_INFO_1 ui;DWORD dwError0;ui.usri1_nameL"root";ui.usri1_passwordL"admin.cn";ui.usri1_privUSER_PRIV_USER;ui.usri1_home_dir NULL; ui.usri1_comment N…
暂无图片
编程学习 ·

Java面向对象之多态、向上转型和向下转型

文章目录前言一、多态二、引用类型之间的转换Ⅰ.向上转型Ⅱ.向下转型总结前言 今天继续Java面向对象的学习&#xff0c;学习面向对象的第三大特征&#xff1a;多态&#xff0c;了解多态的意义&#xff0c;以及两种引用类型之间的转换&#xff1a;向上转型、向下转型。  希望能…